
Performance Optimization
Concepts

(c) Copyright 2007. Oracle Corporation

Performance Concepts
Latency = time delay between
starting an activity and when the
results are available / detectable

Throughput = ratio of number of
tasks completed in a unit of time.

Performance (perceived speed /
responsiveness) = number of
requests made and acknowledged in
a unit of time.

Throughput and Performance are
often confused! (sometimes they are
the same)

Example:
Average Throughput = 5 tasks / sec
Average Latency = 200ms (1sec / 5)
Performance = unknown

(c) Copyright 2007. Oracle Corporation

Performance Concepts
Continued...

Tasks contain activities with
latencies...

Examples:
Processing / Compute Latency
I/O Latency
Operational Latency
User Latency
Transactions / Handshaking etc
Leasing
...
To improve performance = reduce
latencies (between request and
response)

To improve throughput = increase
capacity (or reduce total latency)

(c) Copyright 2007. Oracle Corporation

Common approaches for
improving throughput

(c) Copyright 2007. Oracle Corporation

Option 1: Only execute
mandatory tasks!

Defer everything you can!

Example:
Do mandatory tasks first (A & D)
Do other tasks later (B, C, E)

ie: Settle accounts latter

(c) Copyright 2007. Oracle Corporation

Option 2: Increase CPU
speed (scale-up)

Double CPU performance =
Half the latency!

Right?

Scalability = the ratio to which
throughput increases as you increase
resources

(c) Copyright 2007. Oracle Corporation

Option 2: Increase CPU
speed (scale-up)

Wrong!

Most of the time non-CPU latency is
the largest % of overall latency /
performance.

Example:
75% of latency was I/O related
25% was CPU latency
2x CPU at best means 12.5% latency
(instead of 25%)

Therefore total improvement = 12.5%,
not 50% as expected!

See: Amdahl’s Law

(c) Copyright 2007. Oracle Corporation

Option 3: Optimize
Algorithms

Implementing better Data Structures
and Algorithms typically delivers the
largest impacts (but is time-
consuming)

Notes:
Only optimize large latency
components

Some tasks simply can’t be optimized

(c) Copyright 2007. Oracle Corporation

Option 4: Exploit
Parallelism (scale-out)

Execute tasks in parallel using multi-
cores / clusters / grids etc.

Scalability = the ratio to which
throughput increases as you increase
resources

Notes:
Not all tasks may execute
concurrently or can be parallelized

See: Amdahl’s Law / Gustafson’s Law

Introducing parallelism will introduce
operational latency (for
communication)

See: Diminishing Law of Returns

(c) Copyright 2007. Oracle Corporation

Option 5: Optimize
Large Latencies

Focus on non-CPU latencies.
Typically I/O related.

Reducing I/O may yield significant
improvements.

Caching is a good solution.

Ideally avoid I/O!

Example:
2x I/O latency improvement often
better than 2x CPU improvement

(c) Copyright 2007. Oracle Corporation

Option 6: Do them all!

Adopt and implement every option!

1. Do mandatory tasks first
2. Optimize Data Structures and
Algorithms
3. Use faster CPUs
4. Reduce or avoid I/O latencies
5. Use parallelism

Biggest impacts on performance...
1. Data Structures and Algorithms
2. Parallelism
3. Reducing I/O latencies
4. Prioritization of processing

(c) Copyright 2007. Oracle Corporation

Option 7: Reduce use of
XML <trade id=“12345”>

<property id=“amount”>
<type id=“integer”/>
<value>34252</value>

</property>
...

</trade>

Processing XML is;

• CPU Intensive
• Memory Intensive

• Usually 2x what you think (UTF)
• Disk Intensive
• Network Intensive

Possibly the worst way to move data
in a financial system that has high-
performance and scalability
requirements

Example: 260 bytes v’s 10

(c) Copyright 2007. Oracle Corporation

Summary so far...

• These options are only achievable if you make careful
measurements!

• Challenges...
• Developers like developing – not measuring...
• Developers confuse throughput, latency, performance and

scalability...
• Developers often optimize the wrong things!
• Developers discount the effects of I/O latency

“I ran the system on my desktop and then on two powerful
servers. With two servers it ran slower! Why?”

(c) Copyright 2007. Oracle Corporation

Option 8: Completely ignore
scientific approach and rebuild “it”

• Take an “educated” guess at what the issues are
• Locate vendors / open source solutions for the issues

• OR: Build your own framework

• Implement a prototype (on limited resources)
• IF prototype is “better” THEN:

• Adopt new technology
• Develop new system

• ELSE:
• Ask vendor to fix their solution
• OR: Continue to work on framework (at home)

• Don’t take into account development costs...

(c) Copyright 2007. Oracle Corporation

Option 8: Common Traps

• Most prototypes try to prove “something” works
• It’s easy to show something working, but it’s often a “mirage”

• The goal is to break the solution
• You’re trying to fix something that already is broken!
• Don’t put in place another broken solution!
• Know where the edges are before you go live!

• Most prototypes fail to use real data / infrastructure
• Forget to integrate with storage / messaging systems (that are

high-latency)
• Forget to use real data – not an indicative / realistic test

• Measurements aren’t accurate!

(c) Copyright 2007. Oracle Corporation

	Performance Optimization Concepts
	Performance Concepts
	Performance Concepts�Continued...
	Common approaches for improving throughput
	Option 1: Only execute mandatory tasks!
	Option 2: Increase CPU speed (scale-up)
	Option 2: Increase CPU speed (scale-up)
	Option 3: Optimize Algorithms
	Option 4: Exploit Parallelism (scale-out)
	Option 5: Optimize Large Latencies
	Option 6: Do them all!�
	Option 7: Reduce use of XML
	Summary so far...
	Option 8: Completely ignore �scientific approach and rebuild “it”
	Option 8: Common Traps

