Performance Optimization
Concepts

ORACLE

(c) Copyright 2007. Oracle Corporation

Performance Concepts
Latency = time delay between
starting an activity and when the
results are available / detectable

Throughput = ratio of number of
tasks completed in a unit of time.

Performance (perceived speed /
responsiveness) = number of
requests made and acknowledged in
a unit of time.

Throughput and Performance are
often confused! (sometimes they are
the same)

Example:

Average Throughput = 5 tasks / sec
Average Latency = 200ms (1sec / 5)
Performance = unknown

ORACLE

(c) Copyright 2007. Oracle Corporation

Task C Task D Task E

ff}?’f“’f’%’ ’ff%" ”
A L

L i i |
' ! muﬂ

T
DR -, o

\ Processing <

Performance Concepts , . sk laiency
Continued...

Tasks contain activities with
latencies... —

Examples:
Processing / Compute Latency

I/O Latency

Operational Latency

User Latency

Transactions / Handshaking etc
Leasing

i 7

iff}/ﬁ%/ | f:»*f’J;f

/"f/”’/f///

To improve performance =reduce
latencies (between request and
response) Data

t' Processing <

To improve throughput = increase
capacity (or reduce total latency)

ORACLE

(c) Copyright 2007. Oracle Corporation

Common approaches for
iImproving throughput

ORACLE

(c) Copyright 2007. Oracle Corporation

Option 1: Only execute
mandatory tasks!

Defer everything you can!

Tandaiory taska
Example: |
Do mandatory tasks first (A & D) i SEPCRE,
Do other tasks later (B, C, E) (JBskA | TaskB _ |TaskC Task D Task E
ie: Settle accounts latter m Focaenng e 1 800
AFTER |

1
1
1
e
d
1
1
1
[o
1
'

ORACLE

(c) Copyright 2007. Oracle Corporation

1
1

Option 2: Increase CPU
speed (scale-up)

Double CPU performance =
Half the latency!

i BAFONE |
Right? Task B TaskC Task D TaskE |
i |
Scalability = the ratio to which e 25 CRY Pariprmecs 1880
: ; —_— {assumng Inear
throughput increases as you increase
resources ! AFTER ;

ORACLE

(c) Copyright 2007. Oracle Corporation

Option 2: Increase CPU
speed (scale-up)

Wrong!

Most of the time non-CPU latency is
the largest % of overall latency /
performance.

Example:
75% of latency was I/O related
25% was CPU latency

2x CPU at best means 12.5% latency
(instead of 25%)

Therefore total improvement = 12.5%,
not 50% as expected!

See: Amdahl’'s Law

ORACLE

(c) Copyright 2007. Oracle Corporation

Option 3: Optimize
Algorithms

Implementing better Data Structures
and Algorithms typically delivers the

largest impacts (but is time- ! sarong !
consuming) | _ -
Task B Task C Task D Task E
1 1
Notes: l :
Only optimize large latency L mmr 1098
components ! Sata sriciures) AFTER

Some tasks simply can’t be optimized

ORACLE

(c) Copyright 2007. Oracle Corporation

Option 4: Exploit

Parallelism (scale-out) | BEFOR |
' TaskB | TaskC | Task D | TaskE
Execute tasks in parallel using multi- [
cores / clusters / grids etc. Pt . un
introcuos EM
{rradii-cond / cluster / gnd)

Scalability = the ratio to which - APTAR !
throughput increases as you increase I KB e i
resources i :
Notes:

Not all tasks may execute
concurrently or can be parallelized

See: Amdahl’'s Law / Gustafson’s Law

1

'l 1

i

_ Task D | [
Introducing parallelism will introduce i
1

operational latency (for '
communication)

See: Diminishing Law of Returns

ORACLE

(c) Copyright 2007. Oracle Corporation

=

Option 5: Optimize
Large Latencies

Focus on non-CPU latencies.
Typically I/O related.

i BAFONE |
Reducing I/O may yield significant TaskB Task G Task D TaskE |
improvements. i 1

. : whe mize Higr-Laiency 1080

Caching is a good solution. _— o ﬂl'l'lﬂu'llﬂl

. {usually maans ko)]

: AFTER |
Ideally avoid 1/O! Iﬁ 5[] 5 E | '

Example:
2x /O latency improvement often
better than 2x CPU improvement

ORACLE

(c) Copyright 2007. Oracle Corporation

Option 6: Do them all!

! BEFORE |
1 1

|®| TaskB [TaskC]| Task D | TaskE

Optireze Hgh-Lateroy

Adopt and implement every option!

1
1
— mmnmm 1 500
1. Do mandatory tasks first " ﬂ :,,ml
2. Optimize Data Structures and E Improve CRU AFTEN |

Algorithms
3. Use faster CPUs

4. Reduce or avoid I/O latencies

5. Use parallelism

o
Biggest impacts on performance... !

1. Data Structures and Algorithms

2. Parallelism o
3. Reducing I/O latencies

4. Prioritization of processing

ORACLE

(c) Copyright 2007. Oracle Corporation

=

Option 7: Reduce use of ST '
XML <trade 1d="12345">

Processing XML is <property id="amount”>
« CPU Intensive <type id:“i nteger”/>
* Memory Intensive
« Usually 2x what you think (UTF) <Va| u e>34252</va| u e>

* Disk Intensive

* Network Intensive
</property>

Possibly the worst way to move data

in a financial system that has high-

performance and scalability
requirements

<[trade>

Example: 260 bytes v's 10

ORACLE

(c) Copyright 2007. Oracle Corporation

. Summary so far... @

* These options are only achievable if you make careful
measurements!

e Challenges...
* Developers like developing — not measuring...

» Developers confuse throughput, latency, performance and
scalability...

* Developers often optimize the wrong things!
* Developers discount the effects of 1/0O latency

“I ran the system on my desktop and then on two powerful
servers. With two servers it ran slower! Why?”

ORACLE

(c) Copyright 2007. Oracle Corporation

. Option 8: Completely ignore
scientific approach and rebuild “it” |

* Take an “educated” guess at what the issues are

Locate vendors / open source solutions for the issues
¢ OR: Build your own framework

Implement a prototype (on limited resources)

IF prototype is “better” THEN:
« Adopt new technology
* Develop new system

 ELSE:

* Ask vendor to fix their solution
¢ OR: Continue to work on framework (at home)

* Don’t take into account development costs...

(c) Copyright 2007. Oracle Corporation

. Option 8: Common Traps

Most prototypes try to prove “something” works
* |It's easy to show something working, but it's often a “mirage”

The goal Is to break the solution
* You're trying to fix something that already is broken!
* Don’t put in place another broken solution!
« Know where the edges are before you go live!

Most prototypes fail to use real data / infrastructure

* Forget to integrate with storage / messaging systems (that are
high-latency)

* Forget to use real data — not an indicative / realistic test
Measurements aren’'t accurate!

ORACLE

(c) Copyright 2007. Oracle Corporation

	Performance Optimization Concepts
	Performance Concepts
	Performance Concepts�Continued...
	Common approaches for improving throughput
	Option 1: Only execute mandatory tasks!
	Option 2: Increase CPU speed (scale-up)
	Option 2: Increase CPU speed (scale-up)
	Option 3: Optimize Algorithms
	Option 4: Exploit Parallelism (scale-out)
	Option 5: Optimize Large Latencies
	Option 6: Do them all!�
	Option 7: Reduce use of XML
	Summary so far...
	Option 8: Completely ignore �scientific approach and rebuild “it”
	Option 8: Common Traps

